A Multi-Stage Approach to Fast Face Detection
نویسندگان
چکیده
A multi-stage approach — which is fast, robust and easy to train — for a face-detection system is proposed. Motivated by the work of Viola and Jones [1], this approach uses a cascade of classifiers to yield a coarse-to-fine strategy to reduce significantly detection time while maintaining a high detection rate. However, it is distinguished from previous work by two features. First, a new stage has been added to detect face candidate regions more quickly by using a larger window size and larger moving step size. Second, support vector machine (SVM) classifiers are used instead of AdaBoost classifiers in the last stage, and Haar wavelet features selected by the previous stage are reused for the SVM classifiers robustly and efficiently. By combining AdaBoost and SVM classifiers, the final system can achieve both fast and robust detection because most nonface patterns are rejected quickly in earlier layers, while only a small number of promising face patterns are classified robustly in later layers. The proposed multi-stage-based system has been shown to run faster than the original AdaBoost-based system while maintaining comparable accuracy. key words: fast object detection, face detection, AdaBoost, SVM, cascaded classifiers, Haar wavelet, multi-stage classification
منابع مشابه
Multi-Stage Approach to Fast Face Detection
This paper describes a multi-stage approach for achieving fast and robust face detection. This approach was motivated by the work of Viola and Jones [7] using a cascade of classifiers yielding a coarse-to-fine strategy to significantly reduce detection time while maintaining high detection rate. However, it is distinguished from the previous work by two facts: (i) First, a new stage is added to...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملA Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications
A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...
متن کاملMulti-path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained "Hard Faces"
Large-scale variations still pose a challenge in unconstrained face detection. To the best of our knowledge, no current face detection algorithm can detect a face as large as 800 × 800 pixels while simultaneously detecting another one as small as 8 × 8 pixels within a single image with equally high accuracy. We propose a two-stage cascaded face detection framework, Multi-Path Region-based Convo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEICE Transactions
دوره 89-D شماره
صفحات -
تاریخ انتشار 2006